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Abstract

With the increasing role of computational modeling in engineering design, performance estimation, and safety assess-
ment, improved methods are needed for comparing computational results and experimental measurements. Traditional
methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative.
Computable measures are needed that can quantitatively compare computational and experimental results over a range
of input, or control, variables to sharpen assessment of computational accuracy. This type of measure has been recently
referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric,
as well as features that we believe should be excluded. We develop a new validation metric that is based on the statistical
concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires inter-
polation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to
three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and com-
pressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily inter-
pretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on
the accuracy assessment.
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1. Introduction

It is common practice in all fields of engineering and science for comparisons between computational results
and experimental data to be made graphically. The graphical comparisons are usually made by plotting some
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Nomenclature

C confidence level chosen, C = 100(1 � a)%
CI
�ye

��� ���
avg

average confidence indicator associated with the average of the absolute value of the relative esti-
mated error over the range of the experimental data, see either Eq. (19) or (26)

CI
�ye

��� ���
max

confidence interval associated with the maximum absolute value of the relative estimated error
over the range of the experimental data, see either Eq. (21) or (27)

E true error of the computational model as compared to the true mean of the experimental mea-
surements, ym � leE estimated error of the computational model as compared to the estimated mean of the experi-
mental measurements, ym � �yeeE

�ye

��� ���
avg

average of the absolute value of the relative estimated error over the range of the experimental
data, see Eq. (18)eE

�ye

��� ���
max

maximum of the absolute value of the relative estimated error over the range of the experimental
data, see Eq. (20)

F(m1,m2,1 � a) F probability distribution, where m1 is the first parameter specifying the number of degrees
of freedom, m2 is the second parameter specifying the number of degrees of freedom, and 1 � a is
the quantile for the confidence interval chosen

n number of sample (experimental) measurements
s sample (estimated) standard deviation based on n experimental measurements
SRQ system response quantity
tm t distribution with m degrees of freedom, m = n � 1
ta/2m 1 � a/2 quantile of the t distribution with n degrees of freedom, m = n � 1
�ye sample (estimated) mean based on n experimental measurements
ym mean of the SRQ from the computational model
a arbitrarily chosen total area from both tails of the specified distribution
l population (true) mean from experimental measurements
~h vector of coefficients of the chosen regression function, Eq. (22)
~̂h vector of regression coefficients that minimize the error sum of squares, Eq. (24)
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computational system response quantity (SRQ) with the experimentally measured response over a range of
some input parameter. If the computational results generally agree with the experimental data, the computa-
tional model is commonly declared, ‘‘validated’’. Comparing computational results and experimental data on
a graph, however, is only incrementally better than making a qualitative comparison. With a graphical com-
parison, one rarely sees quantification of numerical solution error or quantification of computational uncer-
tainties, e.g., due to variability in modeling parameters, missing initial conditions, or poorly known boundary
conditions. In addition, an estimate of experimental uncertainty is not typically quoted, nor its statistical char-
acter quantified. A graphical comparison also gives little quantitative indication of how the agreement
between computational results and experimental data varies over the range of the independent variable,
e.g., a spatial coordinate, time, or Mach number. Further, a simple graphical comparison is ill suited for
the purpose of quantitative validation because statistical methods are needed to quantify experimental uncer-
tainty. It should be noted that some journals, such as those published by the American Institute of Aeronau-
tics and Astronautics (AIAA) and the American Society of Mechanical Engineers (ASME), now require
improved statements of numerical accuracy and experimental uncertainty.

The increasing impact of computational modeling on engineering system design has recently resulted in an
expanding research effort directed toward developing quantitative methods for comparing computational and
experimental results. In engineering and physics, the form of the computational models is predominantly given
by partial differential equations (PDEs) with the associated initial conditions and boundary conditions.
Although statisticians have developed methods for comparing models (or ‘‘treatments’’) of many sorts, their
emphasis has been distinctly different from the modeling accuracy assessment perspective in engineering. Much
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of the recent work has been conducted as part of the Department of Energy’s Advanced Simulation and Com-
puting (ASC) Program. Refs. [1,2] argue that quantification of the comparison between computational and
experimental results should be considered as the evaluation of a computable measure or a variety of appropri-
ate measures. They refer to these types of measures as a validation metric and recommend that both uncertain-
ties and errors should be quantified in the comparison of computational and experimental results. The input
data to the metric are the computational results and the experimental measurements of the same SRQ of inter-
est. Uncertainties refer to quantities that are either a random variable, e.g., random measurement uncertainty in
experiments, or unknown quantities due to lack of knowledge, e.g., a boundary condition not measured in an
experiment but needed for input to the computational model. Errors are usually due to numerical solution inac-
curacies, such as lack of spatial grid convergence and lack of time-step resolution in unsteady phenomena.

This paper develops a validation metric based on the concept of statistical confidence intervals. In Section
2, we review the terminology of verification and validation by distinguishing between code verification, solu-
tion verification, validation metrics, model calibration, and adequacy of a model for its intended use. We
briefly review the perspectives of hypothesis testing in statistics, Bayesian statistical inference, and the recent
engineering perspective in validation metrics. In Section 3, we recommend features that should be incorpo-
rated, or addressed, in validation metrics. We discuss our perspective for constructing our confidence inter-
val-based validation metrics and situations where we believe our metrics may or may not be useful. In
Section 4, we review some of the basic ideas of statistical confidence intervals and construct a simple validation
metric for the case of the SRQ at one operating condition. We apply this metric to an example of thermal
decomposition of a polyurethane foam. Section 5 extends the fundamental idea of the validation metric to
the case where the SRQ is measured in fine increments over a range of the input parameter. These increments
allow us to construct an interpolation function of the experimental measurements over the range of the input
parameter. We apply this metric to the example of a turbulent buoyant plume of helium. In Section 6, we
develop the metric for the situation where the experimental data are sparse over the range of the input para-
meter. This very common engineering situation requires regression (curve fitting) of the data. We apply this
metric to the example of compressibility effects on the growth rate of a planar turbulent shear layer. Section
7 provides some observations on the present contribution and makes recommendations for future work.

2. Review of the literature

2.1. Review of the terminology and processes

The terms ‘‘verification’’ and ‘‘validation’’ have a wide variety of meanings in the various technical disci-
plines. The AIAA, through the computational fluid dynamics (CFD) committee on standards [3], the work
of Roache [4–6], and Refs. [2,7], has played a major role in attempting to standardize the terminology in
the engineering community. This paper will use the AIAA definitions [3].

2.1.1. Verification

The process of determining that a model implementation accurately represents the developer’s conceptual
description of the model and the solution to the model.

2.1.2. Validation

The process of determining the degree to which a model is an accurate representation of the real world from
the perspective of the intended uses of the model.

The definition of verification makes it clear that verification addresses the accuracy of the numerical solu-
tion produced by the computer code as compared to the exact solution of the conceptual model. In verifica-
tion, how the conceptual model relates to the ‘‘real world’’ is not an issue. As Roache [5] stated, ‘‘Verification
deals with mathematics’’. Validation addresses the accuracy of the conceptual model as compared to the ‘‘real
world’’, i.e., experimental measurements. As Roache [5] further stated, ‘‘Validation deals with physics’’.

Verification is composed of two types of activities: code verification and calculation verification. Code
verification deals with assessing: (a) the adequacy of the numerical algorithms to provide accurate numerical
solutions to the PDEs assumed in the conceptual model; and (b) the fidelity of the computer programming to



8 W.L. Oberkampf, M.F. Barone / Journal of Computational Physics 217 (2006) 5–36
implement the numerical algorithms to solve the discrete equations. (see Refs. [2,5,7–9] for further discussion
of code verification.)

Calculation verification deals with the quantitative estimation of the numerical accuracy of solutions to the
PDEs computed by the code. The primary emphasis in calculation verification is significantly different from
that in code verification because there is no known exact solution to the PDEs of interest. As a result, we
believe calculation verification is more correctly referred to as numerical error estimation; that is, the primary
goal is estimating the numerical accuracy of a given solution, typically for a nonlinear PDE with singularities,
discontinuities, and complex geometries. For this type of PDE, numerical error estimation is fundamentally
empirical (a posteriori), i.e., the conclusions are based on evaluations and analysis of solution results from
the code. (see Refs. [5,10–14] for further discussion of numerical error estimation.)

As logical principles, code verification and numerical error estimation should be completed before model
validation activities are conducted, or at least before actual comparisons of computational results are made
with experimental results. The reason is clear. We should have convincing evidence that the computational
results obtained from the code reflect the physics assumed in the models implemented in the code and that
these results are not distorted or polluted due to coding errors or large numerical solution errors. Although
the logic is clear concerning the proper order of activities, there are examples in the literature where coding
or solution errors discovered after-the-fact invalidated the conclusions related to the accuracy or inaccuracy
of the physics in the models being evaluated. Stated differently, if a researcher/analyst does not provide ade-
quate evidence about code verification and numerical error estimation in a validation activity, the conclusions
presented are of dubious merit. If conclusions from a defective simulation are used in high consequence system
decision-making, disastrous results may occur.

Ongoing work by the ASME Standards Committee on Verification and Validation in Computational Solid
Mechanics is attempting to clarify that model validation should be viewed as two steps [15]: (1) quantitatively
comparing the computational and experimental results for the SRQ of interest, and (2) determining whether there
is acceptable agreement between the model and the experiment for the intended use of the model. The first step in
validation deals with accuracy assessment of the model, which we will refer to as evaluation of a validation metric.

Fig. 1 depicts several important aspects of validation, as well as issues of prediction and calibration of mod-
els. The left-center portion of Fig. 1 shows the first step in validation. The figure illustrates that the same SRQ
must be obtained from both the computational model and the physical experiment. The SRQ can be any type
Fig. 1. Validation, calibration, and prediction [49]. The figure is reprinted by permission of the American Institute of the Aeronautics and
Astronautics, Inc.



W.L. Oberkampf, M.F. Barone / Journal of Computational Physics 217 (2006) 5–36 9
of physically measurable quantity, or it can be a quantity that is based on, or inferred from, measurements.
For example, the SRQ can involve derivatives, integrals, or more complex data processing of computed or
measured quantities such as the maximum or minimum of functionals over a domain. When significant data
processing is required to obtain an SRQ, it is important to process both the computational results and the
experimentally measured quantities in the same manner. The computational and experimental SRQs are input
to the mathematical procedure, which can be considered as a difference operator, to compute a validation met-
ric result. In this paper, when we refer to the ‘‘validation metric’’, we usually mean the mathematical procedure
that operates on the computational and experimental SRQs. The SRQs are commonly one of two mathemat-
ical forms: (1) a deterministic quantity, i.e., a single value, such as a mean value or a maximum value over a
domain; or (2) a probability measure, such as a probability density function or a cumulative distribution func-
tion. Each of these two forms can be functions of a parameter or multiple parameters in the computational
model, such as a temperature or a Mach number; a function of spatial coordinates, such as Cartesian coor-
dinates (x, y, z); or a function of both space and time. If both the computational and experimental SRQs
are deterministic quantities, the validation metric will also be a deterministic quantity. If either of the SRQs
is a probability measure, the result of the validation metric would also be a probability measure.

Another feature that should be stressed in Fig. 1 is the appropriate interaction between computation and
experimentation that should occur in a validation experiment. To achieve the most value from the validation
experiment, there should be in-depth, forthright, and frequent communication between computationalists
and experimentalists during the planning and design of the experiment. Also, after the experiment has been com-
pleted, the experimentalists should measure and provide to the computationalists all the important input quan-
tities needed to conduct the computational simulation. Examples of these quantities are actual freestream
conditions attained in a wind-tunnel experiment (versus requested conditions), as-fabricated model geometry
(versus as-designed), and actual deformed model geometry due to aerodynamics loads and heating. What should
not be provided to the computationalists in a rigorous validation activity is the measured SRQ. Stated differ-
ently, it is our view that a blind computational prediction be compared with experimental results so that a true
measure of predictive capability can be assessed in the validation metric. For an extensive discussion of the philo-
sophical viewpoint, planning, design, execution, and analysis of validation experiments, see Refs. [2,11,16–20].

The second step in validation deals with comparing the validation metric result with the accuracy require-
ments for the intended use of the model. That is, validation, from a practical or engineering perspective, is not

a philosophical statement of truth. The second step in validation, depicted in the right-center portion of Fig. 1,
is an engineering decision that is dependent on the accuracy requirements for the intended use of the model.
Accuracy requirements are, of course, dependent on many different kinds of factors. Some examples of these
factors are: (a) the complexity of the model, the physics, and the engineering system of interest; (b) the differ-
ence in hardware and environmental conditions between the engineering system of interest and the validation
experiment; (c) the increase in uncertainty due to extrapolation of the model from the validation conditions to
the conditions of the intended use; (d) the risk tolerance of the decision makers involved; and (e) the conse-
quence of failure or underperformance of the system of interest. Although the uncertainty estimation meth-
odology and risk assessment issues involved in the second step are critically important in the application of
a computational model for its intended use, these issues are beyond the scope of this paper. Here, we deal only
with the first step in validation: validation metrics.

2.2. Review of approaches

Traditional approaches for quantitatively comparing computational and experimental results can be divided
into three categories (here, we exclude graphical comparisons). First, in the 1960s the structural dynamics com-
munity began developing sophisticated techniques for assessing agreement between computational and exper-
imental results, as well as techniques for improving agreement. These latter techniques are commonly referred
to as parameter estimation, model parameter updating, or system identification. Two recent texts that provide
an excellent discussion of this topic are Refs. [21,22]. In the approach followed by the structural dynamics com-
munity, certain model input parameters are considered as deterministic (but poorly known) quantities that are
estimated by a numerical optimization procedure so that the best agreement between computational and exper-
imental results can be obtained for a single SRQ or a group of SRQs. Multiple solutions of the computational
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model are required to evaluate the effect of different values of the model parameters on the SRQ. Although
these techniques are used to compare computational and experimental results, their primary goal is to improve
agreement based on newly obtained experimental data.

The second approach is hypothesis testing or significance testing [23,24]. Hypothesis testing is a well-devel-
oped statistical method of deciding which of two contradictory claims about a model, or a parameter, is cor-
rect. In hypothesis testing the validation assessment is formulated as a ‘‘decision problem’’ to determine
whether or not the computational model is consistent with the experimental data. The level of consistency
between the model and the experiment is stated as a probability, based on what has been observed in compar-
ing SRQs from the model and the experiment. This technique is regularly used in the operations research com-
munity for comparing mutually exclusive models. Hypothesis testing has recently been used in a model
validation setting by Refs. [25–30]. Two features of this recent work are noteworthy. First, a validation metric
is not specifically computed as a stand-alone measure that indicates the level of agreement or disagreement
between computational and experimental results. The result of a hypothesis test is focused, instead, on obtain-
ing a yes–no statement of computational-experimental consistency for a pre-specified level of significance. Sec-
ond, this work deals with an SRQ from the computational model that is represented as a probability
distribution. That is, multiple realizations of the SRQ are computed from the model using sampling tech-
niques, such as Monte Carlo sampling, and then the ensemble of these realizations is compared with the
ensemble of experimental measurements.

The third approach is the use of Bayesian analysis or Bayesian statistical inference [31–33]. Bayesian anal-
ysis has received a great deal of attention during the last two decades from statisticians, risk analysts, and
some physicists and structural dynamicists. Although the process is rather involved, Bayesian analysis can
be summarized in three steps. Step 1 is to construct, or assume, a probability distribution for each input quan-
tity in the computational model that is chosen to be a random variable. Step 2 involves conditioning, or updat-
ing, the previously chosen probability models for the input quantities based on comparison of the
computational and experimental results. To update the probability models, one must first propagate input
probability distributions through the computational model to obtain probability distributions for the SRQs
commensurate with those measured in the experiment. The updating of the input probability distributions,
using Bayes equation to obtain posterior distributions, commonly assumes that the computation model is cor-
rect, i.e., the updating is conditional on the correctness of the computational model. Step 3 involves comparing
new computational results with the existing experimental data or any new experimental data that might have
been obtained. The new computational results are obtained by propagating the updated probability distribu-
tions through the computational model. Much of the theoretical development in Bayesian estimation has been
directed toward optimum methods for updating statistical models of uncertain parameters in the computa-
tional model. In validation metrics, however, the emphasis is on methods for assessing the fidelity of the phys-
ics of the existing computational model. Although many journal articles have been published on the topic of
Bayesian inference, the recent work of Refs. [34–40] is noteworthy.

From this very brief description of parameter estimation and Bayesian inference, it should be clear that the
primary goal of both approaches is ‘‘model updating’’ or ‘‘model calibration’’. Although this goal is appro-
priate and necessary in many situations, it is a clearly different goal from that used to evaluate a validation
metric. Our emphasis in validation metrics is in blind assessment of the predictive capability of a computa-
tional model (how good is the model?), as opposed to optimizing the agreement between a given model
and experimental measurements. Fig. 1 depicts the goal of model calibration as the dashed-line upper feed-
back loop. In the figure, the loop is taken if the model does not adequately meet the specified accuracy require-
ments. It should also be noted that the upper feedback loop can also be taken even if the model is adequate. In
such a case one wants to incorporate the latest experimental information into the model and not waste valu-
able information obtained from the experiment. The lower feedback loop in Fig. 1 could be taken if improve-
ments or changes are needed in the experimental measurements or if additional experiments are needed to
reduce experimental uncertainty.

Several researchers have taken approaches that differ from the three just mentioned; however, such
approaches exhibit a common characteristic. Refs. [2,41–49] focus only on comparing a deterministic value
of the SRQ from the computational model with the experimental data. That is, they do not propagate uncer-
tain input parameters through the computational model to obtain multiple realizations or an ensemble of
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SRQs. Oberkampf and Trucano [2] compute a validation metric for the case of multiple experimental mea-
surements over a range of the input parameter. They assume the experimental measurement error is given
by a normal (Gaussian) distribution, and they scale their validation metric result over the range from zero
to unity. A value near zero occurs when there is a very large difference between computational and experimen-
tal results, and a value near unity occurs when nearly perfect agreement occurs. The precise implication of
values between zero and unity is, of course, open to interpretation.
3. Construction of validation metrics

3.1. Recommended features of validation metrics

We believe that validation metrics should include several intuitive properties that would make them useful
in an engineering and decision-making context. Extending the ideas of Refs. [2,7,49], the following is a list of
conceptual properties that we believe a validation metric should satisfy:

(1) A metric should either: (a) explicitly include an estimate of the numerical error in the SRQ of interest
resulting from the computational simulation or (b) exclude the numerical error in the SRQ of interest
only if the numerical error was previously estimated, by some reasonable means, to be small. The pri-
mary numerical error of concern here is the error due to lack of spatial and/or temporal resolution in
the discrete solution. Numerical error could be explicitly included in the validation metric, such as inclu-
sion of an upper and a lower estimated bound on the error in the SRQ of interest. Although explicit
inclusion of the numerical error in the metric seems appealing, it would add significant complexity to
the theoretical derivation, calculation, and interpretation of the metric. By estimating beforehand that
the numerical error is small, one can eliminate the issue from the calculation and interpretation of the
metric. Taking this latter approach, the numerical error should be judged small in comparison to the
estimated magnitude of the experimental uncertainty.

(2) A metric should be a quantitative evaluation of predictive accuracy of the SRQ of interest, including all of
the combined modeling assumptions, physics approximations, and previously obtained physical parame-
ters embodied in the computational model. Stated differently, the metric evaluates the aggregate accuracy
of the computational model for a specific SRQ. Consequently, there could be offsetting errors or widely
ranging sensitivities in the model that could show very accurate results for one SRQ, but poor accuracy
for a different SRQ. If there is interest in evaluating the accuracy of submodels or the effect of the accuracy
of individual input parameters within the computational model, one should conduct a sensitivity analysis
of the SRQ. However, sensitivity analysis is a separate issue from constructing a validation metric.

(3) A metric should include, either implicitly or explicitly, an estimate of the error resulting from postpro-
cessing of the experimental data to obtain the same SRQ that results from the computational model.
Examples of the types of postprocessing of experimental data are as follows: (a) the construction of a
regression function, e.g., least-squares fit, of the data to obtain a continuous function over a range of
an input (or control) quantity; (b) the processing of experimental data that are obtained on a very dif-
ferent spatial or temporal scale than what is modeled in the computational model; and (c) the use of
complex mathematical models of the physically measured quantities to process the experimental data.
A case where the postprocessing described in Example (b) might be necessary is when there are localized
underground measurements of a pollutant concentration and the computational model contains a large-
scale, spatially averaged permeability model. One might require the type of postprocessing defined in
Example (c) when very similar models of the physics in the computational model are also needed to pro-
cess and interpret the experimental data. Note that in the recommended Property (2) mentioned above,
any error associated with the postprocessing of the numerical solution of PDEs should be considered as
part of the error in the computational model.

(4) A metric should incorporate, or include in some explicit way, an estimate of the measurement errors in
the experimental data for the SRQ that are the basis of comparison with the computational model. The
possible sources for measurement errors depend on a very wide range of issues, but a discussion of these
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is clearly beyond the scope of this paper [50,51]. However, measurement errors are commonly segregated
into two types: bias (systematic) errors and precision (random) errors. At a minimum a validation metric
should include an estimate of precision errors, and, to the extent possible, the metric should also include
an estimate of bias errors. The most practical method of estimating a wide range of bias errors is to use
design-of-experiment techniques to transform them into precision errors so that statistical procedures
can be used [18,24,51].

(5) A metric should depend on the number of experimental measurements that are made of a given SRQ of
interest. The number of measurements can refer to a number of situations: (a) multiple measurements
made by the same investigator using the same experimental diagnostic technique and the same experi-
mental facility, (b) multiple investigators using different facilities and possibly different techniques,
and (c) multiple measurements of a given SRQ over a range of input quantities (or levels) for the
SRQ. The reason for including this issue in our recommendations is to stress the importance of multiple
measurements in estimating the accuracy of the experimental result. We contrast our recommendation
with the situation where one experimental measurement is made of an SRQ and then the experimental
uncertainty is estimated based on many assumptions, such as previous experience concerning the error
sources and the interaction and propagation of contributing error sources through the data reduction
process. One measurement with an estimated uncertainty band has much less credence than multiple
measurements, particularly when the multiple measurements vigorously seek to identify possible sources
of error in the measurements or they are from independent sources. (See the classic paper by Youden [52]
and the discussion by Morgan and Henrion [53] concerning the consistent tendency to underestimate
experimental uncertainty.)

(6) A metric should exclude any indications, either explicit or implicit, of the level of adequacy in agreement
between computational and experimental results. Examples of the level of adequacy that have been
improperly used, in our view, in validation metrics are: (a) comparisons of computational and experi-
mental results that yield value judgments, such as ‘‘good’’ or ‘‘excellent’’; and (b) computational results
that are judged to be adequate if they lie within the uncertainty band of the experimental measurements.
We have stressed this issue in Section 2.1, particularly with regard to Fig. 1, and in Section 2.2. Valida-
tion metrics should be measures of agreement, or disagreement, between computational models and
experimental measurements; issues of adequacy or satisfaction of accuracy requirements should remain
separate from the metric.

Although these six conceptual properties in a validation metric seem intuitive, the published literature dem-
onstrates a wide variety of views regarding what a validation metric should embody and how that metric
should be interpreted. Refs. [1,2] propose a metric that satisfies all of these properties. Their metric took
the approach of combining Properties 2, 3, and 4 above into one mathematical quantity: the metric itself. Spe-
cifically, they combined the measure of agreement between computational and experimental results, the esti-
mate of experimental uncertainty, and the number of experimental replications into a single expression for the
metric. Although this is a reasonable approach, the present authors have concluded that combining all three
properties into the same quantity is not the best approach. The present approach constructs a validation met-
ric that separates the accuracy estimation of the computational model from the level of confidence in estima-
tion of the accuracy. Note that hypothesis testing combines these two issues, accuracy and confidence, into one
measure: a probability measure.

3.2. Perspectives of the present approach

The present approach assesses the accuracy of the model based on comparing deterministic computational
results with the estimated mean of the experimental measurements. The primary differences in the present per-
spective, and most of the work cited above, are that: (a) a stand-alone validation metric is constructed to pro-
vide a compact, statistical measure of quantitative disagreement between computational and experimental
results; and (b) a statistical confidence interval is computed that reflects the confidence in the accuracy of
the experimental data. We concur with Ref. [7] that such a validation metric would be most effective in moving
beyond the ‘‘viewgraph norm’’ mode of comparing computational and experimental results so that quantita-
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tive statements of accuracy can be made. This type of metric would be useful for situations in which a com-
putational analyst, a model developer, or competing model developers are interested in quantifying which
model among alternate models is most accurate for a given set of experimental data. In addition, this type
of metric would be useful to a design engineer or a project engineer for specifying model accuracy require-
ments in a particular application domain of the model. It should be noted that if the application domain is
outside the experimental measurement domain, one must account for the additional uncertainty of extrapo-
lation of the model. Although we recognize that the extrapolation procedure should be dependent on both
the error structure and the uncertainty structure in the validation domain, how this extrapolation should
be accomplished is a complex, and unresolved, issue.

The primary reason for our interest in deterministic computational results, as opposed to the approach of
propagating computational input uncertainties to determine output uncertainties in the SRQ, is the much-
lower computational costs involved in deterministic simulations. Many computational analysts argue that
computational resources are not available to provide both spatially and temporally resolved solutions, as well
as nondeterministic solutions, for complex simulations. Risk assessment of high-consequence systems, for
example, safety of nuclear power reactors and underground storage of nuclear waste, has shown that with
an adequate, but not excessive, level of physical modeling detail, one can afford the computational costs of
nondeterministic simulations. However, we recognize that there is substantial resistance in many fields to
attain both grid-resolved and nondeterministic simulations. Consequently, we believe there is a need to con-
struct validation metrics that require only deterministic computational results. As the presently resistant fields
mature further, we believe validation metrics will be constructed that compare probability distributions of the
SRQ from the computational model with probability distributions from the experimental results.

The validation metrics developed here are applicable to SRQs that do not have a periodic character and
that do not have a complex mixture of many frequencies. For example, the present metrics would not be
appropriate for analysis of standing or traveling waves in acoustics or structural dynamics. Another example
of an inappropriate use would be the time-dependent fluid velocity at a point in turbulent flow. These types of
SRQs require sophisticated time-series analysis and/or mapping to the frequency domain. Validation metrics
constructed by Geers [41], Russell [42,43], and Sprague and Geers [45] are better suited to periodic systems or
responses with a combination of many frequencies.

4. Validation metric for one condition

4.1. Development of the equations

In this section, the fundamental ideas of the present validation metric are developed for the case where the
SRQ of interest is defined for a single value of an input or operating-condition variable. This will allow some
discussion of how the present approach implements the recommended conceptual properties mentioned pre-
viously, as well as give an opportunity to review the classical development of statistical confidence intervals.
Since it may be confusing why we begin the development of validation metrics with a discussion of confidence
intervals, we make the following point. We are interested in obtaining an error measure between a determin-
istic computational result and the mean of a population of experimental measurements for which only a finite
sequence of measurements has been obtained. When this is grasped, it is realized that the key issue is the sta-
tistical nature of the sample mean of the measured system response, not the accuracy of the agreement between
the computational result and the individual measurements. With this perspective, it becomes clear that the
point of departure should be a fundamental understanding of the statistical procedure for estimating a con-
fidence interval for the true mean. In traditional statistical testing procedures, specifically hypothesis testing,
the point of departure is the derivation for the confidence interval of the difference between two hypotheses:
the computational mean and the experimental mean.

4.1.1. Construction of a statistical confidence interval

A short review and discussion will be given for the construction of a statistical confidence interval. The
development of confidence intervals is discussed in most texts on probability and statistics. The following
development is based on the derivation by Devore [23], Chapter 7.
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Let X be a random variable characterizing a population having a mean l and a standard deviation r. Let
x1,x2, . . ., xn be actual sample observations from the population, and these are assumed to be the result of a
random sample X1,X2, . . ., Xn from the population. Let X be the sample mean, which is a random variable,
based on the random sample X1,X2, . . ., Xn. Provided that n is large, the central limit theorem implies that
X has approximately a normal distribution, regardless of the nature of the population distribution. Then it
can be shown that the standardized random variable
Z ¼ X � l
S=

ffiffiffi
n
p ð1Þ
has an approximate normal distribution with zero mean and a standard deviation of unity. S is the sample
standard deviation, which is a random variable, based on random samples X1,X2, . . ., Xn. It can also be
shown, provided n is large, that the probability interval for Z can be written as
P ðz�a=2 < Z < za=2Þ ¼ 1� a ð2Þ
where za/2 is the value of the random variable Z at which the integral of Z from za/2 to +1 is a/2. Since Z is
symmetrical and has its mean at zero, the integral of Z from �1 to z�a/2 is also equal to a/2. The total area
from both tail intervals of the distribution is a.

Eq. (2) can be rearranged to show that the probability interval for l, the mean of the population that is the
unknown quantity of interest, is given by
P X � za=2 �
sffiffiffi
n
p < l < X þ za=2 �

sffiffiffi
n
p

� �
¼ 1� a ð3Þ
Eq. (3) can be rewritten as a confidence interval, i.e., a probability interval, for the population mean using
sampled quantities for the mean and standard deviation
l � �x� za=2 �
sffiffiffi
n
p ;�xþ za=2 �

sffiffiffi
n
p

� �
ð4Þ
where �x and s are the sample mean and standard deviation, respectively, based on n observations. Note that �x
and s are computed from the realizations X1 = x1, X2 = x2, . . ., Xn = xn. The term s=

ffiffiffi
n
p

is the standard error of
the sample mean that measures how far the sample mean is likely to be from the population mean. The level of
confidence that l is in the interval given by Eq. (4) can be shown to be 100(1 � a)%. The value of a is arbitrarily
assigned and is typically chosen to be 0.1 or 0.05, corresponding to confidence levels of 90% or 95%, respectively.

The confidence interval for the population mean can be interpreted in a strict frequentist viewpoint or in a
subjectivist, or Bayesian, viewpoint. Let C be the confidence level chosen, i.e., C = 100(1 � a)%, for stating
that the true mean l is in the interval given by Eq. (4). The frequentist would state, ‘‘l is in the interval given
by Eq. (4) with probability C,’’ which means that if the experiment on which l is estimated is performed
repeatedly, in the long run l will fall in the interval given by Eq. (4) C % of the time. The subjectivist would
state [54], ‘‘Based on the observed data, it is my belief that l is in the interval given by Eq. (4) with probability
C ’’. The reason that it cannot be strictly stated that C is the probability that l is in the interval given by Eq. (4)
is that the true probability is either zero or one. That is, the true mean l is either in the interval or it is not; we
simply cannot know with certainty for a finite number of samples from the population. Not withstanding these
fine points of interpretation, we will essentially use the subjectivist interpretation in a slightly different form
than is presented above: l is in the interval given by Eq. (4) with confidence C.

Now consider the case of estimating a confidence interval for an arbitrary number of experimental obser-
vations n, with n as small as two. It can be shown [23] that the equation analogous to Eq. (4) is
l � �x� ta=2;m �
sffiffiffi
n
p ;�xþ ta=2;m �

sffiffiffi
n
p

� �
ð5Þ
where the level of confidence is given by 100(1 � a)% and t�a/2,v is the 1 � a/2 quantile of the t distribution for
m = n � 1 degrees of freedom. For n greater than 16, the cumulative t distribution and the cumulative standard
normal distribution differ by less than 0.01 for all quantiles. In the limit as n!1, the t distribution
approaches the standard normal distribution.
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Eq. (5) is regularly used for hypothesis testing in classical statistical analysis. However, our perspective in
the construction of validation metrics is notably different. We wish to quantify the difference between the com-
putational results and the true mean of the experimental results. Stated differently, we wish to measure shades
of gray between a computational model and an experiment – not make a ‘‘yes’’ or ‘‘no’’ statement about the
congruence of two hypotheses.

4.1.2. Construction of a validation metric based on confidence intervals

As discussed with regard to Fig. 1, the input quantities that should be used in the computational sim-
ulation of the SRQ of interest are those that are actually realized in the validation experiment. Some of
these input quantities from the experiment may not be known precisely for various reasons, for example:
(a) a quantity may not have been specifically measured but was estimated by the experimentalist, taken
from an engineering handbook of physical properties, or simply taken from a fabrication drawing of hard-
ware to be used in the experiment; (b) a quantity may not have been specifically measured but is known to
be a sample from a well-characterized population; and (c) a quantity in the experiment may not be con-
trollable from one experiment to the next, but the individual realizations of the quantity are measured so
that the population for the entire experiment could be fairly well characterized. If these input quantities are
considered as random input variables to the computational model, the proper procedure is to propagate
these uncertain quantities through the model to characterize the SRQ as a random variable. To avoid this
computational cost, as discussed previously, it is commonly assumed that the mean value of the SRQ can
be approximated by propagating only the mean, i.e., the expected value, of all uncertain input parameters
through the computational model. This approach is accurate only for linear models, or non-linear models
where very limited scatter is associated with the random variables. We will briefly discuss this assumption,
however it is addressed in many texts on propagation of uncertain inputs through a model. (See, for exam-
ple, Ref. [55].)

A Taylor series can be written that shows the approximation: Let Ym be the random variable SRQ from the
computational model; let g(Æ) represent the PDE with the associated initial conditions and boundary condi-
tions that map uncertain inputs to the uncertain SRQ; and let vi, where i = 1,2, . . . ,n, be the uncertain input
random variables. Then, the Taylor series for uncorrelated input random variables can be expanded about the
mean of each of the input variables, lvi

, and written as [55]
EðY mÞ ¼ gðlv1
; lv2

; . . . ; lvn
Þ þ 1

2

Xn

i¼1

o
2g

ov2
i

� �
lvi

VarðviÞ þ � � � ð6Þ
where EðY mÞ is the expected value, i.e., the mean, of the SRQ and Var(vi) is the variance of the input variables.
It is seen from Eq. (6) that the first term of the expansion is simply g evaluated at the mean of the input vari-
ables. The second term is the second derivative of g with respect to the input variables. This term, in general,
will be small with respect to the first term if either: (a) g is nearly linear in the input variables or (b) the var-
iance of all of the input variables is small. Linearity in the input variables essentially never occurs when the
mapping of inputs to outputs is given by a differential equation, even a linear differential equation. Note that
when using this approximation one could obtain poor agreement between computational and experimental
results, and the cause is not the model per se, but the inaccuracy of the computational mean caused by the
assumption of the propagation of the mean of the inputs. With this approximation clarified, we now move
on to the construction of a validation metric.

For the validation metric we wish to construct, we are interested in two quantities. First, we want to esti-
mate an error in the SRQ of the computational model based on the difference between the computational
model and the estimated mean of the population based on the experimentally measured samples of the
SRQ. Let ym be the SRQ from the computational model, i.e., the first term of the series expansion given in
Eq. (6). Changing the notation used previously for the experimental measurements from �x to �ye, we define
the estimated error in the computational model as
eE ¼ ym � �ye ð7Þ

where �ye is the estimated, or sample, mean based on n experiments conducted. �ye is given by
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�ye ¼
1

n

Xn

i¼1

yi
e ð8Þ
where y1
e ; y

2
e ; . . . ; yn

e are the individually measured results of the SRQ from each experiment.
Second, we wish to compute an interval that contains the true error, which we do not know, at a specified

level of confidence. Let the true error E be defined as
E ¼ ym � l ð9Þ

where l is the true mean of the population. Writing the confidence interval expression, Eq. (5), for l as an
inequality relation and changing the notation as just mentioned, we have
�ye � ta=2;m �
sffiffiffi
n
p < l < �ye þ ta=2;m �

sffiffiffi
n
p ð10Þ
where s is the sample standard deviation given by
s ¼ 1

n� 1

Xn

i¼1

yi
e � �ye

� �2

" #1=2

ð11Þ
Multiplying Eq. (10) by –1 and adding ym to each term, we have
ym � �ye þ ta=2;m �
sffiffiffi
n
p > ym � l > ym � �ye � ta=2;m �

sffiffiffi
n
p ð12Þ
Substituting the expression for the true error, Eq. (9), into Eq. (12) and rearranging, one obtains
ym � �ye � ta=2;m �
sffiffiffi
n
p < E < ym � �ye þ ta=2;m �

sffiffiffi
n
p ð13Þ
Substituting the expression for the estimated error, Eq. (7), into Eq. (13), we can write the inequality expres-
sion as an interval containing the true error where the level of confidence is given by 100(1 � a)%:
eE � ta=2;m �
sffiffiffi
n
p ; eE þ ta=2;m �

sffiffiffi
n
p

� �
ð14Þ
Using the traditional level of confidence of 90%, one can state the validation metric in the following way:
the estimated error in the model is eE ¼ ym � �ye with a confidence level of 90% that the true error is in the
interval
eE � t0:05;m �
sffiffiffi
n
p ; eE þ t0:05;m �

sffiffiffi
n
p

� �
ð15Þ
Three characteristics of this validation metric should be mentioned. First, the statement of confidence is
made concerning an interval in which the true error is believed to occur. The statement of confidence is not

made directly concerning the magnitude of the estimated error, nor concerning an interval around the com-
putational prediction. The reason such statements cannot be made is that the fundamental quantity that is
uncertain is the true experimental mean. Stated differently, although we are asking how much error there is
in the computational result, the actual uncertain quantity is the referent, i.e., the true experimental value,
not the computational result.

Second, the interval believed to contain the true error is symmetric around the estimated error. We can also
state that the rate of decrease of the magnitude of the interval is a factor of 2.6 when going from two experiments
to three experiments. For a large number of experiments, the rate of decrease of the magnitude of the interval is
1=

ffiffiffi
n
p

. Additionally, the size of the interval decreases linearly as the sample standard deviation decreases.
Third, for small numbers of experimental measurements the assumption must be made that the measure-

ment uncertainty is normally distributed. Although this is a very common assumption in experimental uncer-
tainty estimation, and probably well justified, it is rarely demonstrated to be true [50,51]. However, for a large
number of experimental measurements, as discussed above, the confidence interval on the mean is valid
regardless of the type of probability distribution representing measurement uncertainty.
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As a final point in the development of our approach to validation metrics, we stress the primacy we give to
the experimental data. As can be clearly seen from Eq. (9), the referent for the error measure is the experimen-
tal data, not the computational model or some type of weighted average between the computational model
and the experimental data. However, our trust in the accuracy of experimental measurements is not without
some risk, specifically, if an undetected bias error exists in the experimental data. (See, for example, Refs.
[7,52,53] for further discussion.)

4.2. Example: thermal decomposition of foam

As an example of the application of the validation metric just derived, consider the assessment of a compu-
tational model for the rate of decomposition of a polyurethane foam due to thermal heating. The computa-
tional model solves the energy equation and is composed of three major components: (a) thermal diffusion
through the materials involved, (b) chemistry models for the thermal response and decomposition of polymeric
materials due to high temperature, and (c) radiation transport within the domain and between the boundaries
of the physical system. The foam decomposition model predicts the mass and species evolution of the decom-
posing foam and was developed by Hobbs et al. [56]. Dowding et al. [28] computed the results for this example
using the computer code Coyote which solves the mathematical model using a finite element technique [57].
Three-dimensional, unsteady solutions were computed until the foam decomposes, vaporizes, and escapes from
the container. Solution verification for the computational results relied on the grid-refinement studies previ-
ously conducted by Hobbs et al. [56]. These earlier grid-refinement studies estimated that the mesh discretiza-
tion error was less than 1% for the velocity of the foam decomposition front for mesh sizes less than 0.1 mm.

The experiment to evaluate the computational model was composed of a polyurethane foam enclosed in a
stainless steel cylinder that was heated using high-intensity lamps (Fig. 2). The experiment was conducted by
Bentz and Pantuso and is reported in Hobbs et al. [56]. The position of the foam-gas interface was measured as
a function of time by X-rays passing through the cylinder. The steel cylinder was vented to the atmosphere to
allow gas to escape, and it was heated in three directions: top, bottom, and side. For some of the experiments,
a solid stainless steel cylinder or hollow aluminum component was embedded in the foam.

The SRQ of interest is the average velocity of the foam decomposition front when the front has moved
between 1 and 2 cm. The SRQ was measured as a function of imposed boundary-condition temperature. Since
we are only considering one operating condition for the present validation metric example, we pick the tem-
perature condition of T = 750 �C because it had the largest number of experimental replications. Some of the
Fig. 2. Schematic of foam decomposition experiment [49]. The figure is reprinted by permission of the American Institute of the
Aeronautics and Astronautics, Inc.



Table 1
Experimental data for foam decomposition, Ref. [56]

Experiment number Temperature (�C) Heat orientation V (experiment) (cm/min)

2 750 Bottom 0.2323
5 750 Bottom 0.1958

10 750 Top 0.2110
11 750 Side 0.2582
13 750 Side 0.2154
15 750 Bottom 0.2755
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replications, shown in Table 1, were the result of different orientations on the heat lamps. Computational sim-
ulations by Dowding et al. [28] showed that cylinder orientation had little effect on the velocity of the decom-
position front. Since we are only interested in a single deterministic result from the code, we picked one of the
Dowding et al. results for the computational SRQ. The result chosen for the computational SRQ was
0.2457 cm/min. With this approximation, we assigned the variability resulting from the heating orientation
of the cylinder to uncertainty in the experimental measurements.

Using the data in Table 1 and Eqs. (5), (7), (8), (11), and (15), we obtain

number of samples = n = 6
sample mean ¼ �ye ¼ 0:2314 cm=min
estimated error ¼ eE ¼ 0:2457� 0:2314 ¼ 0:0143 cm=min
sample standard deviation = s = 0.0303 cm/min
degrees of freedom = n � 1 = m = 5
t distribution for 90% confidence (m = 5) = t0.05,m = 2.015
�t0:05;m � sffiffi

n
p ¼ �0:0249 cm=min

true mean with 90% confidence = l � (0.2065, 0.2563) cm/min
true error with 90% confidence � (�0.0106, 0.0392) cm/min

Fig. 3 depicts the sample mean, the model mean, the estimated interval of the true mean, and the estimated
error, with 90% confidence. In summary form, the result of the validation metric is eE ¼ 0:0143� 0:0249 cm/min
with 90% confidence. Since the magnitude of the uncertainty in the experimental data is roughly twice the esti-
mated error, one cannot make any more precise conclusions than ±0.0249 cm/min (with 90% confidence) con-
cerning the accuracy of the model. Whether the estimated accuracy, with its uncertainty, is adequate for the
Fig. 3. Statistical and validation-metric results of foam decomposition.
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intended use of the model is the second step in validation, as was discussed with regard to Fig. 1. If the estimated
accuracy, with its uncertainty, is not adequate for a model-use decision, then one has two options. The first
option, which is the more reasonable option for this case, is to reduce the experimental uncertainty in future
measurements by obtaining additional experimental measurements or by changing the experimental procedure
or diagnostic method to reduce the experimental uncertainty. The second option would be to improve, or
update, the model so that it gives more accurate results. However, in the present case, the error in the model
is small with respect to the experimental uncertainty. As a result, this option would make little sense.

5. Validation metric using interpolation

5.1. Development of the equations

We are now interested in the case where the SRQ is measured over a range of the input variable or the oper-
ating-condition variable. For example, in the foam decomposition experiment just discussed, we would be
interested in the velocity of the foam decomposition front as a function of the heating temperature of the cyl-
inder. Another example would be the thrust of a rocket motor as a function of burn time. Here we consider the
case of one input variable while all others are held constant. This type of comparison is probably the most
common between computational and experimental results. The present ideas could be extended fairly easily
to the case of multiple input variables as long as the input variables were independent.

The following assumptions are made with regard to the computational results:

(1) The mean value of the SRQ is obtained by using the mean value of all uncertain input parameters in the
computational model, i.e., the first term of the series expansion given in Eq. (6). Input parameters
include, for example, initial conditions, boundary conditions, thermodynamic and transport properties,
geometric quantities, and body forces such as electromagnetic forces on the domain of the PDEs.

(2) The SRQ is computed at a sufficient number of values over the range of the input variable, thus allowing
an accurate construction of an interpolation function to represent the SRQ.

The following assumptions are made with regard to the experimental measurements:

(1) The input variable from the experiment is measured much more accurately than the SRQ. Quantita-
tively, this means that the standard deviation of the input variable is much smaller than the standard
deviation of the SRQ. Note that this assumption allows for the case where the input variable is uncon-
trolled in the experiment but assumed to be accurately measured.

(2) Two or more experimental replications have been obtained, and each replication has multiple measure-
ments of the SRQ over the range of the input variable. Using the terminology of Coleman and Steele
[50], it is desirable that Nth-order replications have been obtained, and possibly even replications made
by different experimentalists using different facilities and different diagnostic techniques.

(3) The measurement uncertainty in the SRQ from one experimental replication to the next, and from setup
to setup, is given by a normal distribution.

(4) Each experimental replication is independent from other replications; that is, there is zero correlation or
dependence between one replication and another.

(5) For each experimental replication, the SRQ is measured at a sufficient number of values over the range
of the input variable so that a smooth and accurate interpolation function can be constructed to repre-
sent the SRQ.

With these assumptions, the equations developed in Section 4.1 are easily extended to the case in which
both the computational result and the experimental mean for the SRQ are functions of the input variable
x. Rewriting Eq. (15), the true error as a function of x is in the interval
eEðxÞ � t0:05;m �
sðxÞffiffiffi

n
p ; eEðxÞ þ t0:05;m �

sðxÞffiffiffi
n
p

� �
ð16Þ
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with a confidence level of 90%, and the standard deviation as a function of x is given by
sðxÞ � 1

n� 1

Xn

i¼1

ðyi
eðxÞ � �yeðxÞÞ2

" #1=2

ð17Þ
Note that yi
eðxÞ is interpolated using the experimental data from the ith experimental replication, i.e., the

ensemble of measurements over the range of x from the ith experiment. Each experimental replication need
not make measurements at the same values of x because a separate interpolation function is constructed
for each ensemble of measurements, i.e., each ith experimental replication.

5.2. Global metrics

Although these equations provide the results of the validation metric as a function of x, there are some sit-
uations where it is desirable to construct a more compact, or global, statement of the validation metric result.
For example, in a high-level project management review, it may be useful to quickly summarize measures of
disagreement for a large number of computational models and experimental data. A convenient method to
compute a global metric would be to use a vector norm of the estimated error over the range of the input var-
iable. The L1 norm is useful to interpret the estimated average absolute error of the computational model over
the range of the data. Using the L1 norm, one could form an average absolute error or a relative absolute error
over the range of the data. We choose to use the relative absolute error by normalizing the absolute error by
the estimated experimental mean and then integrating over the range of the data. We define the average rel-

ative error metric to be
eE
�ye

�����
�����
avg

¼ 1

ðxu � xlÞ

Z xu

xl

ymðxÞ � �yeðxÞ
�yeðxÞ

���� ����dx ð18Þ
where xu is the largest value and xl is the smallest value, respectively, of the input variable. As long as j�yeðxÞj is
not near zero, the average relative error metric is a useful quantity.

The confidence interval that should be associated with this average relative error metric is the average con-
fidence interval normalized by the absolute value of the estimated experimental mean over the range of the
data. We define the average relative confidence indicator as the half-width of the confidence interval averaged
over the range of the data:
CI

�ye

���� ����
avg

¼ t0:05;m

ðxu � xlÞ
ffiffiffi
n
p

Z xu

xl

sðxÞ
�yeðxÞ

���� ����dx ð19Þ
We refer to CI
�ye

��� ���
avg

as an indicator, as opposed to an average relative confidence interval, because the uncer-

tainty structure of s(x) is not maintained through the integration operator. CI
�ye

��� ���
avg

would provide a quantity

with which to interpret the significance of eE
�ye

��� ���
avg

. Stated differently, the magnitude of eE
�ye

��� ���
avg

should be inter-

preted relative to the magnitude of the normalized uncertainty in the experimental data, CI
�ye

��� ���
avg

.

There may be situations where the average relative error metric may not adequately represent the model
accuracy because of the strong smoothing nature of the integration operator. For example, there may be a
large error at some particular point over the range of the data that should be noted. It is useful to define a
maximum value of the absolute relative error over the range of the data. Using the L1 norm to accomplish
this, we define the maximum relative error metric as
eE

�ye

�����
�����
max

¼ max
xl6x6xu

ymðxÞ � �yeðxÞ
�yeðxÞ

���� ���� ð20Þ
A significant difference between
eE
�ye

��� ���
avg

and
eE
�ye

��� ���
max

would indicate the need to more carefully examine the

trend of the model with respect to the trend of the experimental data.
The confidence interval that should be associated with the maximum relative error metric is the confidence

interval normalized by the estimated experimental mean. Both the confidence interval and the estimated exper-
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imental mean are evaluated at the point where the maximum relative error metric occurs. Let the x value whereeE
�ye

��� ���
max

occurs be defined as x̂. Then the confidence interval associated with the maximum relative error metric is
Fig. 4.
Institu
CI

�ye

���� ����
max

¼ t0:05;mffiffiffi
n
p sðx̂Þ

�yeðx̂Þ

���� ���� ð21Þ
Note that in this section, Section 5, all of the functions of x, e.g., ym(x) and s(x), are considered as contin-
uous functions constructed by interpolation. In the next section, Section 6, we consider the case where these
functions are constructed using regression.

5.3. Example: turbulent buoyant plume

As an example of the validation metric just derived, consider the assessment of a computational model for a
turbulent buoyant plume of helium that is exiting vertically from a large nozzle. Turbulent buoyant plumes,
typically due to the combustion of fuel–air mixtures, have proven to be especially difficult to model in CFD.
This is primarily because of the strong interaction between the density field and the momentum field domi-
nated by large turbulent eddies. The slowest turbulent scales are on the order of seconds in large fires, and
this large-scale unsteadiness is beyond the modeling capability of a Reynolds-Average Navier–Stokes (RANS)
formulation. The computational model to be evaluated here solves the continuity equation and the temporally
filtered Navier–Stokes (TFNS) equations. The TFNS equations are similar to RANS equations, but a nar-
rower filter width is used so that large-scale unsteadiness can be captured [58]. DesJardin et al. [59] have also
computed turbulent buoyant plumes using large-eddy simulation (LES), but these simulations are even more
computer intensive than TFNS simulations. Tieszen et al. [60] conducted an unsteady, three-dimensional sim-
ulation of a large-scale helium plume using the TFNS model and the standard k–e turbulence model. These
models, among others, are implemented in the SIERRA/Fuego computer code [61] being developed at Sandia
as part of the ASC Program.

The experimental data for the validation metric were obtained in the fire laboratory for accreditation of
models and experiments (FLAME) facility at Sandia. The FLAME facility is a building designed for indoor
fire experiments so that atmospheric winds do not influence the buoyant plume, and all other boundary con-
ditions affecting the plume can be measured and controlled. For the present experiment, instead of the fuel-
Experimental setup for measurements of the helium plume [49,59,62]. The figure is reprinted by permission of the American
te of the Aeronautics and Astronautics, Inc.
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pool fire producing a buoyant plume, an inflow jet of helium was used (Fig. 4) [59,62]. The helium source is
1 m in diameter and is surrounded by a 0.51 m wide surface to simulate the ground plane that is typical in a
fuel-pool fire. Inlet air is injected from outside the building at the bottom of the facility and is drawn by the
accelerating helium plume over the ground plane surrounding the plume source.

The experimental data consist of velocity field measurements using particle image velocimetry (PIV) and
scalar concentration measurements using planar-induced fluorescence (PLIF). Here we are interested in only
the PIV measurements, but details of all of the diagnostic procedures and uncertainty estimates can be found
in O’Hern et al. [62]. The PIV data are obtained from photographing the flowfield, which has been seeded with
microspheres of glass beads, at 200 images/s. Flowfield velocities are obtained in a plane that is up to 1 m from
the exit of the jet and illuminated by a laser light sheet. The flow velocity of interest here, i.e., the SRQ that is
input to the validation metric, is the vertical velocity component along the centerline of the helium jet. For
unsteady flows such as this, there are a number of different oscillatory modes that exist within the plume.
The SRQ of interest is time-averaged for roughly 10 s in the experiment, which is roughly seven cycles of
the lowest mode in the jet. Shown in Fig. 5 are four experimental measurements of time-averaged vertical
velocity along the centerline as a function of axial distance from the exit of the helium jet. The experimental
replications were obtained on different days, with different equipment setups, and with multiple recalibrations
of the instrumentation. A large number of velocity measurements were obtained over the range of the input
variable, the axial distance, so that an accurate interpolation function could be constructed.

Tieszen et al. [60] investigated the sensitivity of their solutions to both modeling parameters and numerical
discretization on an unstructured mesh. The key modeling parameter affecting the TFNS solutions is the size
of the temporal filter relative to the period of the largest turbulent mode in the simulation. Four spatial discret-
izations were investigated: 0.25M, 0.50M, 1M, and 2M elements (1M = 1 · 106). Each of these solutions was
time-averaged over roughly seven puffing cycles, as were the experimental data. In comparing their 1M- and
2M-element solutions, we found little reason to be convinced that the 2M-element solution was spatially con-
verged. A finer mesh, say, 4M elements, would greatly help in determining whether the computational results
are actually converged. However, computational resources were not available to compute the 4M-element solu-
tion. As a result, we will use their 2M-element solution as only representative data with which to demonstrate the
present validation metric.
Fig. 5. Experimental measurements of time-averaged vertical velocity along the centerline for the helium plume [49,59,62]. The figure is
reprinted by permission of the American Institute of the Aeronautics and Astronautics, Inc.



Fig. 6. Experimental sample mean with 90% confidence interval and computational result for vertical velocity in the helium plume [49].
The figure is reprinted by permission of the American Institute of the Aeronautics and Astronautics, Inc.
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Using the experimental data shown in Fig. 5, noting that n = 4, one obtains the sample mean of the mea-
surements, �yeðxÞ, shown in Fig. 6. Also, using the interpolated function for the experimental sample mean and
the confidence interval for the true mean, one obtains the interval around the estimated mean in which the true
mean will occur with 90% confidence (Fig. 6). The computational solution obtained from the 2M-element
mesh is also shown in Fig. 6. As is commonly done in the literature, an author would conclude that there
is ‘‘good’’ agreement between computational and experimental results or, more boldly, claim that the code
has been ‘‘validated’’. However, as discussed previously, such statements ignore critical issues: (a) ‘‘good’’
has not been quantified; and (b) accuracy requirements for the intended use of the model have been ignored,
rendering any claim of ‘‘good’’ agreement questionable.

The level of (dis)agreement between computational and experimental results can be more critically seen by
plotting the estimated error, eEðxÞ ¼ ymðxÞ � �yeðxÞ, along with the 90% confidence interval from the experiment
(Fig. 7). The type of plot shown in Fig. 7 is the result of the validation metric derived in Section 5.1. Exam-
ining these quantities provides a magnifying glass, as it were, to both the error in the computational model and
the uncertainty in the experimental data. Only courageous modelers, experimentalists, or decision makers
using the model will be eager to examine matters this closely. Two points should be made from Fig. 7. First,
the largest modeling error, although not large, occurs very near the beginning of the plume. Second, near this
region the magnitude of the modeling error is outside the 90% confidence interval of the experimental data,
giving credence to the estimated modeling error. We remind the reader that these conclusions can only be
defended if it is assumed that the TFNS solution is mesh converged.

The validation metric result shown in Fig. 7 can be quantitatively summarized, or condensed, using the glo-
bal metrics given in Eqs. (21)–(24). Over the range of the data, these results are as follows:

Average relative error = 11% ± 9% with 90% confidence
Maximum relative error = 54% ± 9% with 90% confidence

Thus, the average relative error could be as large as 20% and as small as 2% (on average) over the range of
the data, with 90% confidence due to uncertainty in the experimental data. The average relative error shows
that the model accuracy, on average, is comparable to the average confidence indicator in the experimental



Fig. 7. Validation metric result and 90% confidence interval for centerline velocity [49]. The figure is reprinted by permission of the
American Institute of the Aeronautics and Astronautics, Inc.
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data. Similarly, the maximum relative error could be as small as 45% and as large as 63%, with 90% confidence
due to uncertainty in the experimental data. The maximum relative error, 54%, which occurs at x = 0.067 m, is
five times the average relative error, indicating a significant difference in the local character of the computa-
tional model and the experimental data. Note that for these experimental data, the average relative confidence
Fig. 8. Estimated error and true error in the model with 90% confidence interval uses. The figure is reprinted by permission of the
American Institute of the Aeronautics and Astronautics, Inc.
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indicator, 9%, happens to be essentially equal to the relative confidence interval at the maximum relative error.
If one uses both the average relative error and the maximum relative error for a ‘‘first look’’ evaluation of the
model, a large difference between these values should prompt a more careful examination of the data, for
example, examination of plots such as Figs. 6 and 7.

The final method of displaying the results of the validation metric is to plot the 90% confidence interval of
the true error in velocity predicted by the computational model as a function of the axial distance from the exit
of the jet. Using Eq. (16), one obtains the result shown in Fig. 8. Our best approximation of the true error in
the model is the estimated error. However, with 90% confidence we can state that the true error is in the inter-
val shown in Fig. 8.

Although Fig. 8 displays essentially the same data as shown in Fig. 7, Fig. 8 allows us to consider slightly
different perspectives for assessing the model. For example, we could view Fig. 8 from the perspectives of those
who might use the validation metric results to evaluate the predictive capability of the computational model. A
model builder, for example, would likely investigate the cause of the largest error, i.e., near x = 0.01 m, and
explore ways to improve the model. For an analyst, i.e., a person who is going to use the model for predictions
of flowfields that are related to the present flowfield, the perspective is somewhat different from that of the
model builder. The analyst might conclude that the accuracy of the model is satisfactory for its intended
use and simply apply the model as it is. Alternatively, the analyst might decide to use Fig. 8 to incorporate
a bias-error correction directly on the SRQ, i.e., the vertical velocity on the centerline of the plume. For exam-
ple, the analyst might take any new result for the SRQ computed from the model and correct it according to
the curve for the estimated error in Fig. 8. If the analyst was conducting a nondeterministic analysis, the ana-
lyst might assign a bias correction using a normal probability distribution to the interval shown in Fig. 8 with
the expected value set to the estimated error and the upper and lower intervals set to the 90% quantile of the
distribution. This procedure for model correction would clearly involve risk because it completely ignores the
physical cause of the error. However, if the schedule or budget for completing the analysis does not allow fur-
ther investigation, this procedure could prove useful for the analyst and decision maker.

6. Validation metric requiring regression

6.1. Development of the equations

We are now interested in a case similar to that described in Section 5, where there is still one SRQ that is
measured over a range of one input or operating condition variable but the quantity of experimental data for
this new case is not sufficient to construct an interpolation function. Consequently, a regression function
(curve fit) must be constructed to represent the estimated mean over the range of the data. Some examples
are lift (or drag) of a flight vehicle as a function of the Mach number, turbopump mass flow rate as a function
of backpressure, and depth of penetration into a material during high-speed impact. Construction of a regres-
sion function is probably the most common situation that arises in comparing computational and experimen-
tal results when the input variable is not time. When time-dependent SRQs are recorded, the temporal
resolution is typically high so that the construction of a validation metric would be analogous to the situation
discussed in Section 5.

Regression analysis procedures are well developed in classical statistics for addressing how two or more
variables are related to each other when one or both contain random uncertainty. We are interested here in
the restricted case of univariate regression, i.e., how one variable (the SRQ) relates to another variable (the
input variable). The two assumptions pertaining to the computational results discussed in Section 5.1 are also
made for the present case. The first four assumptions pertaining to the experimental measurements discussed
in Section 5.1 are also made for the present case. In addition to these, the following assumption is made with
regard to the experimental uncertainty: the standard deviation of the normal distribution that describes the
measurement uncertainty is constant over the entire range of measurements of the input parameter. It should
also be noted that this assumption is probably the most demanding of the experimental measurement assump-
tions listed.

In the present development, it was initially thought that traditional confidence intervals in regression
analysis could be applied to the construction of the validation metric. (See, for example, Ref. [23] for
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a description of the traditional development of confidence intervals in regression analysis.) We realized,
however, that the traditional development only applies to the case of a specific, but arbitrary, value of
the input parameter. That is, the traditional confidence interval is a statement of the accuracy of the esti-
mated mean as expressed by the regression for point values of the input parameter x. The traditional con-
fidence interval is written for l conditional on a point value of x, say, x*, i.e., l½�yeðxÞjx�� As a result, the
traditional confidence interval analysis cannot be applied to the case of a validation metric over a range of
the input variable.

A more general statistical analysis procedure was found that develops a confidence interval for the entire
range of the input parameter [63–65]. That is, we wish to determine the confidence interval that results from
uncertainty in the regression coefficients over the complete range of the regression function. The regression
coefficients are all correlated with one another because they appear in the same regression function that is fit-
ting the experimental data. This type of confidence interval is typically referred to as a simultaneous confi-
dence interval, a simultaneous inference, or a confidence region, so that it can be distinguished from
traditional (or single-comparison) confidence intervals.

Since the quantity of experimental data is not sufficient to construct an interpolating function, we can rep-
resent the estimated mean of the data, �yeðxÞ, as a general nonlinear regression function
�yeðxÞ ¼ f ðx;~hÞ þ e ð22Þ

where f(x;Æ) is the chosen form of the regression function over the range of the input parameter x;
~h ¼ h1; h2; . . . ; hp are the unknown coefficients of the regression function; and e is the random measurement
error. Let the set of n experimental measurements of the SRQ of interest be given by
ðyi
e; xiÞ for i ¼ 1; 2; . . . ; n ð23Þ
Using a least-squares fit of the experimental data, it can be shown [64,65] that the error sum of squares Sð~hÞ in
p-dimensional space is
Sð~hÞ ¼
Xn

i¼1

yi
eðxÞ � f ðxi;~hÞ

h i2

ð24Þ
The vector that minimizes Sð~hÞ is the solution vector, and it is written as
~̂h. This system of simultaneous, non-

linear equations can be solved by various software packages that compute solutions to the nonlinear least-
squares problem.

Draper and Smith [64] and Seber and Wild [65] discuss a number of methods for the computation of the

confidence regions around the point
~̂h in p-dimensional space. For any specified confidence level

100(1 � a)%, a unique region envelops the point
~̂h. For two regression parameters, (h1, h2), we have a two-

dimensional space, and these regions are contours that are similar to ellipses with a curved major axis. For
three parameters, (h1, h2, h3), we have a three-dimensional space, and these regions are contours that are sim-
ilar to bent ellipsoids and shaped like a banana. A procedure that appears to be the most robust to nonlinear
features in the equations [65] and that is practical when p is not too large, is to solve an inequality for the set of
~h:
~h such that Sð~hÞ 6 Sð~̂hÞ 1þ p
n� p

F ðp; n� p; 1� aÞ
� 	

ð25Þ
In Eq. (25), F(m1,m2,1 � a) is the F probability distribution, m1 is the first parameter specifying the number of
degrees of freedom, m2 is the second parameter specifying the number of degrees of freedom, 1 � a is the quan-
tile for the confidence interval of interest, and n is the number of experimental measurements.

If we would like to make a quantitative assessment of the global modeling error, then we can extend the
global measures expressed in Eqs. (21)–(24). The average relative confidence indicator, Eq. (19), and the con-
fidence interval associated with the maximum relative error, Eq. (21), are based on symmetric confidence inter-
vals derived in Section 5.1. Since we no longer have symmetric confidence intervals, we approximate these by
taking the average half-width of the confidence interval over the range of the data and the half-width of the
confidence interval at the maximum relative error, respectively. As a result, we now have
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yþCIðxÞ � y�CIðxÞ
2�yeðxÞ

���� ����dx ð26Þ
for the average relative confidence indicator. yþCIðxÞ and y�CIðxÞ are the upper and lower confidence intervals,
respectively, as a function of x. As discussed in the next section, yþCIðxÞ and y�CIðxÞ are found by substituting

into the regression function f ðx;~hÞ, all~h that satisfy Eq. (25). As stated earlier, CI
�ye

��� ���
avg

provides a quantity with

which to interpret the significance of
eE
�ye

��� ���
avg

.
Also, we have
CI

�ye

���� ����
max

¼ yþCIðx̂Þ � y�CIðx̂Þ
2�yeðx̂Þ

���� ���� ð27aÞ
for the half-width of the confidence interval at the maximum relative error point, x̂. CI
�ye

��� ���
max

provides a quantity

with which to interpret the significance of
eE
�ye

��� ���
max

. The maximum relative error point is defined as the x value

where eE
�ye

��� ��� achieves its maximum, that is,
x̂ ¼ x such that
yþCIðxÞ � y�CIðxÞ

�yeðxÞ

���� ���� is a maxium for xl 6 x 6 xu ð27bÞ
6.2. Solution of the equations

We consider a geometric interpretation of Eq. (25) to facilitate the numerical evaluation of the inequality.
We seek the complete set of~h values that satisfy the inequality. For a given confidence level a, the inequality
describes the interior of a p-dimensional hypersurface in ~h space. Thus, for p = 2, it describes a confidence

region, bounded by a closed contour, in the parameter space (h1, h2). An example of a set of such contours
is depicted in Fig. 9. As the confidence level increases, the corresponding contours describe larger and larger

regions about the least-squares parameter vector
~̂h.

The numerical algorithm employed in the present work discretizes the interior of the confidence region
using several contour levels that lie within the highest confidence contour. For example, suppose we wish
to calculate the 90% confidence interval given the confidence regions depicted in Fig. 9. We would evaluate
the regression equation at a number of points, say, 20%, along the entire 90% contour. Then, we would do
Example of various confidence regions for the case of two regression parameters [49]. The figure is reprinted by permission of the
can Institute of the Aeronautics and Astronautics, Inc.
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the same along the 80% contour, the 70% contour, and so on down to the 10% contour. With all of these
regression function evaluations, we would then compute the maximum and minimum of the function over
the range of the input parameter x. This would provide reasonably good coverage of the 90% confidence inter-
val of the regression function. If more precision was needed, one could choose more function evaluations
along each contour and compute each contour in 1% increments of the confidence level.

For a three-dimensional regression parameter space, slices can be taken along one dimension of the result-
ing three-dimensional surface, and each slice can be discretized in the manner described for the two-dimen-
sional case. Generalizing to N dimensions, one may generate a recursive sequence of hypersurfaces of lower
dimension until a series of two-dimensional regions are obtained, and evaluation over all of the two-dimen-
sional regions gives the desired envelope of regression curves.

To determine the upper and lower confidence intervals associated with the regression equation, Eq. (22), we
use the solution to Eq. (25), i.e., all~h lying within (and on) the desired contour. The confidence intervals are
determined by computing the envelope of regression curves resulting from all ~h lying within the confidence
region. If we think of the solution to Eq. (25) as given by a set of discrete vectors of~h, then we can substitute
this set of parameter vectors into the regression equation, Eq. (22). For each element in this set of~hs, we obtain
a specific regression function. If we evaluate the ensemble of all regression functions by using all of the~hs, we
can compute the maximum value of the regression function, yþCIðxÞ, and the minimum value of the regression
function, y�CIðxÞ, over the range of x. As a result, yþCIðxÞ and y�CIðxÞ define the upper and lower bounds on the
confidence intervals, respectively, over the range of x. One may ask why the regression function must be eval-
uated over the entire confidence region. This must be done because the nonlinear regression function can have
maxima and minima anywhere within the confidence region.

6.3. Example: compressible free-shear layer

The example chosen for the application of the validation metric derived in Section 6.1 is prediction of com-
pressibility effects on the growth rate of a turbulent free-shear layer. An introduction to the problem is given,
followed by a discussion of the available experimental data. Details of the computational model and verifica-
tion of the numerical solutions are then described along with the validation metric results. A more detailed
discussion of the experimental and computational analysis can be found in a paper by Barone et al. [66].

6.3.1. Problem description

The planar free-shear layer is a canonical turbulent flow and a good candidate for use in a unit-level val-
idation study. Fig. 10 shows the general flow configuration in which a thin splitter plate separates two uniform
streams (numbered 1 and 2) with different flow velocities and temperatures. The two streams mix downstream
of the splitter-plate trailing edge, forming the free-shear layer within which momentum and energy are dif-
fused. For a high Reynolds-number flow, the boundary layers on both sides of the plate and the free-shear
layer are inevitably turbulent. In the absence of any applied pressure gradients or other external influences,
Fig. 10. Flow configuration for the turbulent free-shear layer [49]. The figure is reprinted by permission of the American Institute of the
Aeronautics and Astronautics, Inc.
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the flowfield downstream of the trailing edge consists of a shear layer development region near the edge, fol-
lowed by a similarity region. Within the development region, the shear layer adjusts from its initial velocity
and temperature profiles inherited from the plate boundary layers. Further downstream in the similarity
region, the shear layer thickness, d(x), grows linearly with streamwise distance x, resulting in a constant value
of dd/dx.

Of particular interest in high-speed vehicle applications is the behavior of the shear layer as the Mach num-
ber of one or both streams is increased. A widely accepted parameter correlating the shear layer growth rate
with compressibility effects is the convective Mach number, that was defined by Bogdanoff [67] for mixing two
streams of the same gas:
Mc ¼
u1 � u2

c1 þ c2

ð28Þ
where u is the fluid velocity and c is the speed of sound. It has been found experimentally that an increase in the
convective Mach number leads to a decrease in the shear layer growth rate for the fixed velocity and temperature
ratios of the streams. This is usually characterized by the compressibility factor U, which is defined as the ratio of
the compressible growth rate to the incompressible growth rate at the same velocity and temperature ratios:
U ¼ ðdd=dxÞc
ðdd=dxÞi

ð29Þ
6.3.2. Experimental data

Experimental data on high-speed shear layers are available from a number of independent sources. The
total collection of experimental investigations employs a wide range of diagnostic techniques within many dif-
ferent facilities. Comparisons of data obtained over a range of convective Mach numbers from various exper-
iments indicate a significant scatter in the data. (See, e.g., Lele [68].) Recently, Ref. [66] carefully reexamined
the available data and produced a recommended data set that exhibits smaller scatter in the measurements.
The guidelines for filtering and reanalyzing the data were as follows:

1. Shear layer thickness data based on pitot measurements or optical photographs, such as Schlieren photo-
graphs, were not considered reliable and were rejected.

2. A data point was eliminated if there was clear evidence, based on the description of the experiment, the
facility, or the data, that the required experimental conditions were not met, e.g., d(x) showed that shear
layers were not fully developed in the test section of the wind tunnel. Note that no data was removed simply
because it was an ‘‘outlier’’ or ‘‘looked bad’’, as is commonly done in reporting experimental results.
Fig. 11. Experimental data for compressibility factor versus convective Mach number [66].
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3. A consistent method was used to estimate the incompressible growth rate (dd/dx)i given the experimental
flow conditions for each experiment considered.

The resulting ensemble of data from Refs. [67,69–78] is presented in Fig. 11. The data are organized into
groups of sources, some of which are themselves compilations of results from several experiments.

6.3.3. Computational model

For the present study, we use the simulation results computed by Barone et al. [66]. They used the Favre-
averaged compressible Navier–Stokes equations with the standard k–e turbulence model [79]. The low Rey-
nolds-number modification to the k–e model of Nagano and Hishida [80] was applied near the splitter plate.
Most turbulence models in their original form do not correctly predict the significant decrease in shear layer
growth rate with increasing convective Mach number, necessitating inclusion of a compressibility correction.
Several compressibility corrections, derived from a variety of physical arguments, are widely used in contem-
porary CFD codes. In this study, the dilatation-dissipation compressibility correction of Zeman [81] is used.

The solutions were computed using the Sandia advanced code for compressible aerothermodynamics
research and analysis (SACCARA) [82,83], that employs a block-structured, finite volume discretization
method. The numerical fluxes are constructed with the Symmetric TVD scheme of Yee [84], which gives a sec-
ond-order convergence rate in smooth flow regions. The equations are advanced to a steady-state using the
LU-SGS scheme of Yoon and Jameson [85]. Solutions were considered iteratively converged when the L2
norm of the momentum equation residuals decreased eight orders of magnitude. Numerical solutions were
obtained over the convective Mach number range of the experimental data, from 0.1 to 1.5, in increments
of 0.14.

For each convective Mach number, solutions were calculated on three grids: coarse, medium, and fine. The
grids are uniform in the streamwise, or x, direction, and stretched in the cross-stream, or y, direction, so that
grid cells are clustered within the shear layer. The cells are highly clustered in the y direction near the trailing
edge and become less clustered with increasing x to account for the shear layer growth. Richardson extrapo-
lation [5,10,11,86,87] was used to estimate the discretization error on dd/dx. The maximum error in the fine-
grid solution was estimated to be about 1% at Mc = 0.1 and about 0.1% at Mc = 1.5.

We defined d using the velocity layer thickness definition. (See Ref. [66] for details.) As mentioned previ-
ously, the thickness grows linearly with x only for large x due to the presence of the development region, which
precedes the similarity region. Given that the growth rate actually approaches a constant value only asymp-
totically, the thickness as a function of x is fit with a curve that mimics this functional form. The function used
for the fit is
dðxÞ ¼ b0 þ b1xþ b2x�1 ð30Þ

which leads to a growth rate that approaches b1 as x becomes large. The coefficient b1 is taken to be the actual
fully developed shear layer growth rate.

Following extraction of the compressible growth rate, (dd/dx)c, the incompressible growth rate, (dd/dx)i,
must be evaluated at the same velocity and temperature ratio. Incompressible or nearly incompressible results
are difficult to obtain with a compressible CFD code. Therefore, the incompressible growth rate was obtained
by computing a similarity solution for the given turbulence model and flow conditions. The similarity solution
is derived by Wilcox [79] in his turbulence modeling text and implemented in the MIXER code, which is dis-
tributed with the text. The similarity solution is computed using the same turbulence model as the Navier–
Stokes calculations, but under the assumptions that (a) the effects of laminar viscosity are negligible and
(b) there exists zero pressure gradient.

6.3.4. Validation metric results
The quantities d and dd/dx are post-processed from the finite-volume computational solution and the

MIXER code, but the SRQ of interest for the validation metric is the compressibility factor U. Before the val-
idation metric result can be computed, we must prescribe a form for the nonlinear regression function to rep-
resent the experimental data in Fig. 11. It is important that the proper functional behavior of the data,
established through theoretical derivation or experimental measurement, be reflected in the form of the regres-
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sion function. For the compressible shear layer, we know that U must equal unity, by definition, in the incom-
pressible limit Mc! 0. Experimental observations and physical arguments also suggest that U! constant as
Mc becomes large. These considerations lead to the following choice of the regression function, taken from
Paciorri and Sabetta [88]:
U ¼ 1þ ĥ1

1

1þ ĥ2M ĥ3
c

� 1

 !
ð31Þ
Using Eq. (31) and the experimental data shown in Fig. 11, we used the MATLAB [89] function nlinfit from
the Statistics Toolbox to calculate the following regression coefficients:
ĥ1 ¼ 0:5537; ĥ2 ¼ 31:79; ĥ3 ¼ 8:426 ð32Þ

We now compute the 90% confidence interval of the regression function Eq. (31) with the

~̂h values given in
Eq. (32) and the inequality constraint given by Eq. (25). We use the method outlined in Section 6.2 to compute
the 90% confidence region in the three-dimensional space described by h1, h2, and h3. The resulting confidence
region, pictured in Fig. 12, resembles a curved and flattened ellipsoid, especially for small values of h2. The
elongated shape in the h2 direction indicates the low sensitivity of the curve fit to h2 relative to the other
two regression parameters. Evaluation of the regression function Eq. (31) for all~h lying within the 90% con-
fidence region yields the desired simultaneous confidence intervals.

Fig. 13 shows the final result of the analysis in graphical form: a plot of the experimental data along with
the regression fit, the 90% confidence interval, and the computational simulation result. Concerning the 90%
confidence interval, it is seen that the largest uncertainty in the experimental data occurs for large Mc. This
Fig. 12. Three-dimensional 90% confidence region for the regression fit to the shear layer experimental data.



Fig. 13. Comparison of the simulation result with the experimental data, nonlinear regression curve, and 90% simultaneous confidence
interval.
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uncertainty is primarily a result of the uncertainty, i.e., the 90% confidence interval, in the h1 parameter of the
regression function. From the viewpoint of the design of needed validation experiments, one can conclude that
future experiments should be conducted at higher convective Mach numbers to better determine the asymp-
totic value of U. Concerning the error assessment of the k–e model, it is seen that the Zeman compressibility
correction predicts a nearly linear dependence of the compressibility factor on Mc over the range
0.2 6Mc 6 1.35. One could claim that the trend is correct, i.e., the Zeman model predicts a significant
decrease in the turbulent mixing as the convective Mach number increases; however, the Zeman model does
Fig. 14. Validation metric result and 90% confidence interval for U.
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not predict the nonlinear dependency on Mc. We did not compute any simulation results for Mc > 1.5 and, as
a result, did not determine the asymptotic value of U for the Zeman compressibility correction. However, the
solutions for Mc = 1.36 and Mc = 1.50 suggest that the asymptotic value is near U = 0.49.

The estimated error, eEðxÞ, of the model as a function of Mc is plotted in Fig. 14 along with the 90% con-
fidence interval from the experimental data. This plot presents the validation metric result, i.e., the difference
between computation and the regression fit of the experimental data, along with the 90% confidence interval
representing the uncertainty in the experimental data. As pointed out previously in the helium plume example,
the validation metric makes a critical examination of both a computational model and the experimental data.
With this plot it is seen that there is a slight underprediction of turbulent mixing in the range 0.3 6Mc 6 0.6
and a significant overprediction of turbulent mixing in the range 0.7 6Mc 6 1.3. Examining an error plot such
as this, one could conclude that the Zeman model does not capture the nonlinear trend of decreasing turbulent
mixing with increasing convective Mach number. Whether the model accuracy is adequate for the require-
ments of the intended application is, of course, a completely separate conclusion.

Note that in Fig. 14 the confidence intervals are not symmetric with respect to zero. In the case of nonlinear
regression, specifically Eq. (29) here, the nonlinear function need not possess any symmetric properties with
respect to the regression parameters. Therefore, evaluation of the nonlinear function over the set of~h satisfy-
ing Eq. (25) results in asymmetric confidence intervals over the range of the input parameter. For the shear
layer example, Eq. (31) is evaluated over the volume of regression coefficients shown in Fig. 12.

Using Eqs. (18), (20), (31), and (32), the results for the k–e model with the Zeman compressibility correction
over the range 0 6Mc 6 1.5 are as follows:

Average relative error = 13% ± 9% with 90% confidence
Maximum relative error = 35% ± 10% with 90% confidence

The average error of 13%, though not alarmingly large, is clearly larger than the average experimental con-
fidence indicator. As in the helium plume example, we encounter a maximum error that is noticeably larger
than the average error, i.e., roughly a factor of three. From Fig. 14 it can be found that the maximum absolute
error occurs at Mc = 0.83. The maximum relative error, however, occurs at Mc = 0.88. At this value of Mc one
determines that the 90% confidence interval is ±10%.

7. Conclusions and future work

The validation metrics derived here are relatively easy to compute and interpret in practical engineering
applications. When nonlinear regression functions are required for the metric, the nonlinear regression func-
tion requires a software package, such as Mathematica or MATLAB, to perform the computations. The inter-
pretation of the present metrics in engineering decision making should be clear and understandable to a wide
variety of technical staff (analysts, model builders, and experimentalists) and management. The metric result
has the following form: estimated error of the model ± an interval that represents experimental uncertainty
with 90% confidence. The present metrics are only measures of error for the mean response of the system.
More descriptive metrics, for example, those that would measure the accuracy of the variability of the
response, should be developed in the future. The present metrics can be used to compare the modeling accu-
racy of different competing models, or they can help to assess the adequacy of the given model for an appli-
cation of interest. We point out that how the result of a validation metric relates to an application of interest is
a separate and more complex issue, especially if there is significant extrapolation of the model. Although this
issue is not addressed here, it is critical to the estimation of computational modeling uncertainty for complex
engineering systems.

The validation metrics presented here should apply to a wide variety of physical systems in fluid dynamics,
heat transfer, and solid mechanics. If the SRQ is a complex time-varying quantity, such as velocity at a point
in a turbulent flow, then the quantity should be time-averaged to obtain a steady-state. If it is inappropriate to
time-average the SRQ of interest and it has a periodic character or a complex mixture of many periods, such as
modes in structural dynamics, then the present metrics would not be appropriate. These types of SRQs require
sophisticated time-series analysis and/or mapping to the frequency domain. In addition, the present metrics
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directly apply to single SRQs that are a function of a single input, or control, quantity. Future work will
extend the present approach to metrics that would apply to single SRQs that are a function of multiple input
quantities.
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